

Summary

- Stars are very far away
- Stars come in a variation of colors, sizes and brightnesses

 "Earth-like" means a rocky planet in the habitable zone

Hotter Stars Sunlike Stars Cooler Stars

Summary

- We can't see planets directly
- We look for planet's effects on stars
 - Planet's gravity pulls the star a little bit
 - Very difficult to measure the star's change in position
 - Easier to measure the change in the star's speed
 - Doppler method

Discoveries with Doppler Method

- 529 planets
- A few potentially habitable planets rocky planets
 - Somewhat controversial
- But mostly large, hot gas giant planets
 - Biggest change in star's speed from big planets close to star

Other Ways a Planet Effects Starlight?

Other Ways a Planet Effects Starlight?

Gravity bends light

Gravitational Microlensing

- Gravity bends light
- If a star passes in front of a distant star it will focus the light like a lens

Gravitational Lensing

- Gravity bends light
- If a star passes in front of a distant star it will focus the light like a lens

Gravitational Microlensing

 If a planet is aligned just right, it also bends the light creating an extra spike

A Real Microlensing Event

Different from the Doppler Method

- Gravitational Microlensing does not watch the planet orbit the star
- The lensing happens only when the star and planet together happen to pass exactly in front of a more distant star
 - So it happens only once per planet
- All we can measure this way is the mass of the planet
- Microlensing is rare, so it is difficult to measure how common planets are this way

Finding Microlensing Events

- Use a dedicated telescopes looking at very crowded star fields
 - First planets found by the OGLE project (Andrzej Udalski), based in Poland, using a telescope in Chile

The First Microlensing Planet

Why the Brightness Has 2 Spikes

Microlensing Results

- There are now 5 major microlensing teams watching the sky
- 36 confirmed planets have been discovered, with an assortment of masses
 - A few may be as small as the Earth
 - We know how far they are from their star in a few cases
 - But we only see them once then they're gone

Other Ways a Planet Effects Starlight?

Planetary Transits

• We see Venus and Mercury go in front of the

Sun

Called a transit

Transit of Venus

Transit of Venus

Took about 8 hours

Transiting Exoplanets

• Don't see the disk of the star

All we have is the amount of starlight, not an

image of the star

Other Ways a Planet Effects Starlight?

 Measure the brightness of the star as the planet blocks the light

How Much Light Gets Blocked?

- Depends on how much of the area of the star is blocked by the area of the planet
 - Depends on the square of these radii

The Planet Needs to Actually Go In Front of the Star

 The orbit must be aligned so that we're viewing it edge on

How Often is a Planet Aligned?

- The orbit must be aligned so that we're viewing it edge on
- If we assume the orbits are randomly aligned, planets closer to their stars are more likely to be aligned
 - 10% for hot Jupiters
 - ½% for Earth-like orbits

How Easy is the Transit Signal to See?

- From Earth it is not too difficult to measure a 1% (Jupiter-size-planet) transit
- HD 209458 b: First transiting planet detected in 1999 separately by David Charbonneau and George Henry,
 - after this planet was detected (by Geoff Marcy and Paul Butler) using the Doppler method

The Light Curve of HD 209458 b

- Using an Earth Telescope
- About 1.8%, larger than Jupiter

How do we Find Transiting Exoplanets

- If every star has a planet
 - only 10% of them will transit if they are hot jupiters
 - Only ½% of them will transit if they are in Earth-like orbits
- So look at lots of stars
 - Collection of robot telescopes

Transits Found With Earth Telescopes

- 227 confirmed transiting planets
- · Almost all large in small orbits
 - We can only see large transits from Earth
 - One planet about 2.5 times size of Earth
- Several multiple-robot-telescope projects underway

Deep, 1% Transits From Earth are Easy

• But 0.01% (Earth-size planet) is a very different story

Earth is a Bad Place to Look for Transits

- Noise sources
 - Atmosphere
 - Temperature variations (day-night cycle)
- Length of observation is wrong
 - Earth-orbit transit is 13 hours
 - But night is about that long or shorter
- So go to Space!

First Transit Search From Space

- CoRot (Convection Rotation and Transits)
 - Designed to both detect transiting planets and measure properties of stars

CoRot

- Small (27 cm), wide field telescope
- Launched in 2006, into a low Earth orbit
 - Looks at stars for a few weeks at a time
 - Still suffers from a day-night cycle
- Originally intended as a 2.5-year mission
 - Lasted 6 years, until November 2012

CoRot discoveries

- 28 confirmed planets
 - Several hundred candidates
 - Still mostly large in small orbits
- Smallest planet: CoRot-7b
 - 1.5 time Earth radius
 - 0.8 day period
 - Hot!!

Go Deeper Into Space

- A space telescope specifically designed to find Earth-size transiting planets in Earth-like orbits
 - Get away from the Earth
 - Into orbit around the Sun
 - Look at the same stars for many years
 - Use a larger telescope
 - · Collecting more light reduces the noise
 - Use a wide field to capture many many stars at the same time

Kepler History

• First proposed: 1983

- Bill Borucki

• "It Won't Work": 1983 – 1995

- Not accurate enough, too much noise

• Lab tests show it will work: 1995

• Convincing more people: 1995 – 2001

Selected!! 2001

• Begin construction: 2002

• Hire lots of people: 2002 – 2008

• Launch: 2009

Kepler's Strategy

- Watch 160,000 to 170,000 stars (almost) nonstop for 3.5 years
 - -0.5% of 160,000 = 800 stars
 - But we don't know which ones
 - Need a wide field of view
 - 0.95 meter Schmidt camera
 - 100 square degrees of the sky (!)
 - 96 million pixels on 21 modules
 - Need fantastic stability
 - In space, orbiting the Sun
 - Earth orbit is too noisy

Where to Look?

- Want lots of Sun-like stars
 - But only know the color of stars
 - Nearby yellow dwarf (Sun-like) stars look the same as distant yellow giant (not Sun-like) stars

• Solution: look a little above the Milky Way so most stars are

not too far away

Where to Look?

Kepler's Design

Telescope and Spacecraft

Wrapped and Ready to Go!

